Microelectronics and geopolitics:

 the scientific and technological perspectiveAlessandro Paccagnella
Department of Information Engineering,
University of Padua
Alessandro.paccagnella@unipd.it
Reliability and Radiation Effects
on Advanced CMOS Technologies

The chips war

Europe joins the US in its chip war with China

-2. By Julana Lu una Weyne Chang, CNN
SPOTLIGHT YOUR GUIDE TO STREAMING SERVI © © (m) Published 7:11 AM EST, Thu March 9, 2023

In the Tech War with China, the U.S. Is Finding

Friends

Crisi dei chip e auto, come stanno le cose e il ruolo della Cina

Altro che calo della produzione: nel 2021 il numero di pezzi consegnati ai clienti è aumentato del 15%. Quello che è interessante capire è a chi siano andati i semiconduttori

Gianluigi Giannetti
-
08 marzo 2022-12:23

Electronics value chain

Worldwide Electronics value chain in 2017

Thierry Breton (since 2019 Commissioner for Internal Market of the European Union), 15 September, 2021:

How a European Chips Act will put Europe back in the tech race
"The world is short of semiconductors.
The shortage of semiconductors - also known as chips - has very concrete consequences on the EU economy, jobs and even leisure. Carmakers postpone the production of vehicles. Broadband providers run out of Internet routers. Gamers cannot get their hands on next-gen consoles.
The situation might last for a while.
Semiconductors are at the core of our world's digitisation, but global supply is currently struggling to meet the explosion of demand driven by smartphones, Internet of Things and connected cars. But it is not only about supply and demand.
Semiconductors are at the core of the global technological race
Semiconductors are at the centre of strong geostrategic interests, and at the core of the global technological race.

Superpowers are keen to secure their supply in the most advanced chips as they are well aware that it will condition their capacity to act (militarily, economically, industrially) and drive digital transformation."

Chips are used:

\rightarrow in everyday life

Chips are essential for a wide range of technological and digital products, such as cars, household appliances and electronics. Due to geostrategic issues and supply chain disruptions, European industry is currently facing challenges in the supply of semiconductors.

The Chips Act aims to reduce the EU's vulnerabilities and dependencies on foreign actors. This will improve the EU's security of supply, resilience and technological sovereignty in the field of chips.

The Council adopted its position on the Chips Act on 1 December 2022.
(work, education, entertainment, households)

\rightarrow for key infrastructures
(energy, mobility, data and communication)

And are essential for tomorrow's economy

(green energy, Internet of Things, artificial intelligence, high-performance computing platforms)

The first transistor: 1947

The first transistor on Germanium: December 1947, John Bardeen and Walter Brattain, in the group lead by William Shockley at Bell Telephone Laboratories, NJ, USA

A success: the transistor-based portable radio

Transistors and computers

The Fairchild 2N709 was a fast (3-ns switching time) and reliable BJT developed by Fairchild Semiconductor under CDC (Control Data Corporation) requirements. Jean Amédée Hoerni met the specification by combining "gold-doping" together with the new epitaxial deposition process. The 2N709 npn device was introduced in July 1961 as the first silicon transistor to exceed germanium speed.
The CDC 6600 was the first successful supercomputer, outperforming the industry's prior recordholder, the IBM 7030 Stretch, by a factor of three (3 Mflops). The CDC 6600 was the world's fastest computer from 1964 to 1969, when it relinquished that status to its successor, the CDC 7600. The first CDC 6600's were delivered in 1965 to Livermore and Los Alamos; then others followed, including the Courant Institute of Mathematical Sciences, CERN, the Lawrence Radiation Laboratory. At least 100 were delivered in total.

A CDC 6600 cordwood logic module containing 64 silicon transistors. The module is cooled conductively via the front panel. The 6600 model contained nearly 6,000 such modules

Electronic computers: vacuum tubes

The ancestors: Colossus (UK, 1943) and ENIAC (USA, 1945) vs the Soviet approach

Integrated circuits

In the Summer 1958, Jack Kilby, a radio engineer and a veteran of World War II who worked at the Army lab before joining Texas Instruments, formulated three features of integration, quite inspiring even today:

1. The only thing that a semiconductor company can successfully produce is semiconductors.
2. All circuit elements, including resistors and capacitors can be made of a semiconductor.
3. All circuit components can be formed on one semiconductor crystal, adding only the interconnections.

On September 12, 1958, he presented the first IC prototype on Ge, which
 was a single-transistor oscillator with a distributed RC feedback.

On September 19, 1958, he made the second prototype on Ge, a twotransistor trigger and filed several patent submissions.

Texas Instruments introduced the inventions by Kilby to the public on March 6, 1959.

Integrated circuits

In the years following the introduction of the integrated circuit and preceding the publication of Moore's 1965 paper, sales of integrated circuits were dominated by purchases from government agencies $(\rightarrow$ aerospace, defense).

NASA's Apollo Program was the largest single consumer of integrated circuits between
 1961 and 1965.

This high initial cost means ICs are only commercially viable when high production volumes are anticipated.

The first commercial microprocessor: 1971

>1971 - INTEL 4004: the first microprocessor (2300 MOSFETs, Silicon gate technology)
> Federico Faggin, born in Vicenza, laurea in Physics at Unipd, then emigrated in California
$>$ Microprocessor \rightarrow powerful computation, easy, small size and cheap \rightarrow home computer \rightarrow PC IBM (1981) \rightarrow economic and social revolution: communication and information society
> In the same year, another microprocessor (the MP944 chipset, manufactured by American Microsystems, Inc) was already flying aboard the F-14 Tomcat fighter

Microprocessors in the Soviet bloc

Microprocessors in the Soviet bloc

GaAs and the SDI

1983: the 40 th US President, Ronal Reagan (1981-1989), launched the Strategic Defense Initiative, also nicknamed "Star wars program", that spurred also large technological development), in particular on GaAs concerning our interest.
After some preliminary work, a workable IC fabrication technology became available, taking advantage from the high electron mobility inherent to GaAs, which translates into improved speed and power. This advantage of GaAs plus its inherent radiation hardness made it a natural for military research. Realizing this, in the mid-1970's the Defense Sciences Office (DSO) of DARPA had already started a technology-based program to develop GaAs digital circuits.
By the end of the 80s, the DoD had funded a successful GaAs Pilot Line program that sought to develop GaAs digital ICs to compete with Si . However, the advantages of Si , including an established infrastructure and lower cost, prevailed and the GaAs digital IC goal was eventually not achieved.

This led the US government to switch its funding to the refinement of GaAs MESFET technology and the development of high-frequency GaAs amplifiers within the Microwave/Millimeter Wave Monolithic Integrated Circuits (MIMIC) program.
Running until 1995, the MMIC programme had an incredible level of financial support, with DARPA pumping in an estimated $\$ 400$ million. Although the initial focus was on microwave and millimeter-wave $e_{\text {,oodntegrated circuits for defense }}$ applications, it also helped develop and refine test-and-measurement, assembly and manufacturing capabilities.
Test and manufacturing capabilities were then propelled to a new level with the Microwave Analog Front End Technology (MAFET, untii 1999) program, concentrated on developing multi-chip module manufacturingesamab ${ }^{500}$ bility.

Moore's Law - The number of transistors on integrated circuit chips (1971-2018) Moore's law describes the empirical regularity that the number of transistons on integrated circuits doubles approximately every two years. This advancement is important as other aspects of technological progress - such as processing speed or the price of electronic products - are linked to Moore's Law.
$50,000,000,000$

The number of transistors
$10,000,000,000$ $5,000,000,000$

$1,000,000,000$

500,000,000
$100,000,000$ $50,000,000$
$10,000,000$ $5,000,000$ $1,000,000$ 500,000 100,000 50,000 10,000 5,000 on integrated circuits doubles approximately every two years \rightarrow true exponential growth! 1,000

Our World in Data

SEMICONDUCTOR TECHNOLOGY EVOLVES DRIVEN BY CHANGING APPLIGATION LANDSCAPE
G. Moore, "Cramming more components onto integrated circuits", Electronics, Volume 38, Number 8, April 19, 1965

TSMC

https://www.tsmc.com/english/dedicatedFoundry/technology/logic

TSMC - founded

 by Morris Chang in Taiwan in 1987 (end of martial

For a long time, the gate length (and the metal halfpitch) represented the defining features of technology \rightarrow the technology node number

Semiconductor market leaders - 1985-2011

Worldwide Semiconductor Sales Leaders (\$B)

Source: IC Insights

1990:

6 JAP, 3 US, 1 EU

$$
\begin{aligned}
& \text { 2000: } \\
& 3 \text { JAP, } 3 \text { US, } 3 \text { EU, } 1 \text { KOR } \\
& \qquad \begin{array}{l}
\text { 2011: } \\
5 \text { US, } 2 \text { KOR, } 2 \text { JAP, } 1 \text { EU }
\end{array}
\end{aligned}
$$

Semiconductor market size worldwide from 1987 to 2023
(in billion U.S. dollars)

The DRAM war

Birth of Quimonda

Semiconductor market leaders - 1985-2011

Worldwide Semiconductor Sales Leaders (\$B)
Hvoundav elertronirs(1983)• merge with

Rank	Semiconductor Companies with >\$10 Billion in Sales in 2021F											ix (2001)
2 T	$\begin{array}{r} \text { 2021F } \\ \text { Rank } \end{array}$	$\begin{aligned} & 2020 \\ & \text { Rank } \end{aligned}$	Company	Headquarters	$\begin{gathered} 2020 \\ \text { Total IC } \end{gathered}$	$\begin{aligned} & 2020 \\ & \text { Total } \\ & \text { O-S-D } \end{aligned}$	2020 Total Semi	$\begin{gathered} 2021 F \\ \text { Total IC } \end{gathered}$	$\begin{gathered} \text { 2021F } \\ \text { Total } \\ \text { O-S-D } \end{gathered}$	2021F Total Semi	$\begin{aligned} & \text { 2021/2020 } \\ & \text { \% Change } \end{aligned}$	
3 Mato												
4 Hitar												
5 Tosh	1	2	Samsung	South Korea	58,555	3,298	61,853	78,850	4,235	83,085	34\%	
6 Fujit	2	1	Intel	U.S.	76,328	0	76,328	75,550	0	75,550	-1\%	8) \rightarrow
7 Phili	3	3	TSMC (1)	Taiwan. China	45,572	0	45,572	56,633	0	56,633	24\%	
8 Inte	4	4	SK Hynix	South Korea	26,094	981	27,075	35,628	1,639	37,267	38\%	
9 Natio	5	5	Micron	U.S.	22,542	0	22,542	30,087	0	30,087	33\%	
10 Matsu	6	6	Qualcomm (2)	U.S.	19,357	0	19,357	29,136	0	29,136	51\%	
Top 10 Total (\$B)	7	8	Nvidia (2)	U.S.	14,659	0	14,659	23,026	0	23,026	57\%	
Semi Market (\$B)	8	7	Broadcom Inc. (2)	U.S.	15,941	1,803	17,744	18,864	2,099	20,963	18\%	
Top 10\% of Total Semil	9	12	MediaTek (2)	Taiwan. China	10,985	0	10,985	17,551	0	17,551	60\%	
Source: IC Insights	10	9	TI	U.S.	12,731	843	13,574	15,889	1,015	16,904	25\%	
1990:	11	15	AMD (2)	U.S.	9,763	0	9,763	16,108	0	16,108	65\%	
	12	11	Infineon	Europe	7,542	3,683	11,225	9,113	4,503	13,616	21\%	
	13	10	Apple* (2)	U.S.	11,440	0	11,440	13,430	0	13,430	17\%	
2000:	14	14	ST	Europe	6,804	3,374	10,178	8,400	4,174	12,574	24\%	
	15	13	Kioxia	Japan	10,553	0	10,553	12,132	0	12,132	15\%	
2011:	16	17	NXP	Europe	7,582	809	8,391	9,711	1,004	10,715	28\%	
	17	19	Analog Devices (3)	U.S.	7,722	405	8,127	9,575	504	10,079	24\%	
	-	-	Top-25 Total		364,170	15,196	379,366	459,683	19,173	478,856	26\%	
2020:	(1) Found			(2) Fabless		(3) Inclu	s aquire	d compan	sales in	2020 and	2021 results	
	Source:	ompany	reports, IC Insights				*Custom	devices fo	internal			

War winds in the Far East？

PLANET MONEY

Forging Taiwan＇s Silicon Shield

The Chinese Communist Party claims Taiwan is－and has always been－a part of China．Meanwhile，many on the island say Taiwan is independent of China and a self－governed democracy．One thing that may be protecting the island in this global feud：semiconductors．

Economy｜Business and Economy

Taiwan＇s＇silicon shield＇：Why island may not be the next Ukraine

The self－ruled island＇s dominance in semiconductors is seen by some analysts as a deterrent against an invasion by Beijing．

Home Opinion
It＇s a myth that＇silicon shield＇protects Taiwan from China invasion

There is no such thing as a＇silicon shield＇protecting Taiwan，and propagating this myth is dangerous

SIE20
By Courtney Donovan Smith／石東文，Taiwan News，Contributing Columnist 2022／10／10 23：44

EU within the international context

https://www.politico.eu/article/europe-microchip-intel-investment-magdeburg-commission-technology/

EU and the others

Thierry Breton:
Chips are a strategic component of any industrial chain. The race for the most advanced chips is a race about technological and industrial leadership. Europe cannot and will not lag behind.
While global demand has exploded, Europe's share across the entire value chain, from design to manufacturing capacity has shrunk. We depend on state-of-the-art chips manufactured in Asia. So this is not just a matter of our competitiveness. This is also a matter of tech sovereignty. So let's put all of our focus on it.

EU Chips Act: announced 8 February, 2022, 43 B€

USA: Creating Helpful Incentives to Produce Semiconductors (CHIPS) for America Act, 2022, 52B US\$
China: estimated 150B US\$ 2015 -2022 for semiconductor industry; 14 December, 2022: Reuters quoting three sources reported that China will soon announce a package with more than CNY1 trillion (US\$143 billion) to bolster its semiconductor industry towards chip self-sufficiency.

EU and the others

Thi
Commission welcomes political agreement on the European Chips Act
Ch
chi Brussels, 18 April 2023ed
lag The Commission welcomes the political agreement reached today between the European Parliament and the EU Member States on the European Chips Act, proposed by the Commission on 8 February Wł 2022, including on the budget. Jm
de: Semiconductors are at the centre of strong geostrategic interests, and of the global technological ipsmácompetitiveness and resilience in this strategic sector.
má Chips are the essential building blocks of digital and digitised products. From smartphones and cars,
EUthrough critical applications and infrastructures for healthcare, energy, defence, communications andindustrial automation, chips are central to the modern digital economy.
USRecent shortages of semiconductors have highlighted Europe's dependency on a limited number ofsuppliers outside of the EU, in particular Taiwan and South-East Asia for manufacturing of chips, and
20.the United States for their design. To respond to critical dependencies, the European Chips Act
will strengthen manufacturing activities in the Union, stimulate the European designCh will strengthen manufacturing activities in the Union, stimulate the European designers
quc European Chips Act, the European Union aims to reach its target to double its current 'Y1
trill،

 global market share to \(\mathbf{2 0 \%}\) in 2030. global market share to \(\mathbf{2 0 \%}\) in 2030. global market share to \(\mathbf{2 0 \%}\) in 2030.

EU Chips Act

EUROPEAN CHIPS ACT

The European Chips Act will ensure that the EU strengthens its semiconductors ecosystem, increases its resilience, as well as ensure supply and reduce external dependencies.

1. Strengthen Europe's research and technology leadership towards smaller and faster chips

2. Build and reinforce capacity to innovate in the design, manufacturing and packaging of advanced chips

3. Address the skills shortage, attract new talent and support the emergence of a skilled workforce

4. Develop an in-depth understanding of the global semiconductor supply chains

The Chips Act should result in additional public and private investments of more than $\mathbf{€ 1 5}$ billion.
These investments will complement:

- existing programmes and actions in research \& innovation in semiconductors (Horizon Europe, Digital Europe programme)
- announeed support by Member States.

In tota more than € $\mathbf{4 3}$ billion of policy-driven investment will support the Chips Act until 2030, which will be broadly matched by long-term private investment.

Intel, German Government Agree on Increased Scope for Wafer Fabrication Site in Magdeburg

Agreement accounts for Intel's expanded investment to build two leading-edge semiconductor facilities in Germany.

News

June 19, 2023
The Chips Act should result in additi These investments will complement:

- existing programmes and ac programme)
- announeed support by Memt In tota more than $\mathbf{€ 4 3}$ billion of broadly matched by long-term priva

BERLIN, June 19, 2023 - Intel and the German federal government have signed a revised letter of intent for Intel's planned leading-edge wafer fabrication site in Magdeburg, the capital of Saxony-Anhalt state in Germany. The agreement encompasses Intel's expanded investment in the site, now expected to be more than 30 billion euros for two first-of-a-kind semiconductor facilities (also known as "fabs") in Europe, along with increased government support that includes incentives, reflecting the expanded scope and change in economic conditions since the site was first announced.

EU Chips Act

REUTERS ${ }^{\ominus}$

Germany spends big to win \$11 billion TSMC chip plant

By Ben Blanchard and Thomas Escritt
า in-depth
ng of the

August 8, 2023 5:30 PM GMT+2 • Updated 24 days ago :onductor

TAIPEI/BERLIN, Aug 8 (Reuters) - Taiwanese chipmaker TSMC on Tuesday committed 3.5 billion euros
 ($\$ 3.8$ billion) to a factory in Germany, its first in Europe, taking advantage of huge state support for the \$11 billion plant as the continent seeks to bring supply chains closer to home.

The plant, which will be TSMC's (2330.TW) third outside of traditional manufacturing bases Taiwan and China, is central to Berlin's ambition to foster the domestic semiconductor industry its car industry will need to remain globally competitive.

EU Chips Act

EUROPEAN CHIPS ACT

Floris Hulshoff Pol
㫮 June 6, 2023
ণ̈ 1 min

Tags in this article
Globalfoundries,
semiconductor industry,
STMicroelectronics

The French government is subsidizing a new chip factory by STMicroelectronics and GlobalFoundries to the tune of $\mathbf{2 . 9}$ billion euros. The subsidy is part of a larger French plan for the semiconductor industry.

The chip makers' new factory is located in Crolles near the city of Grenoble. The chips that the factory will produce are primarily for the (French) automotive industry, but also industrial IoT (IIoT) applications. The chips in question are mainly 18 nm chips.

The arrival of the factory should create a thousand jobs. The entire construction of the factory, including the $€ 2.9$ billion subsidy from the French state, will cost $€ 7.5$ billion. Production at the new chip factory should increase French chip production by 6 percent annually. This is about 620,000 wafers per year.

In tota(, more than €43 billion of policy-driven investment)will support the Chips Act until 2030, which will be broadly matched by long-term private investment.

FIJ Chins Act

Intel Plans Assembly and Test Facility in Poland

Investment near Wrocław, Poland, will help create a first-of-its-kind end-to-end leading-edge manufacturing semiconductor value chain in Europe.

News
\section*{leadership towards}
the smaller and faster chips
June 16, 2023
Contart Intel PR

NEWS HIGHLIGHTS

- Investment of up to $\$ 4.6$ billion will create approximately 2,000 Intel jobs and thousands of indirect supplier and temporary construction jobs.
- The new facility will help meet demand for assembly and test capacity anticipated in coming years.
- Facilities will be constructed according to green building principles and will operate with high environmental standards to minimize carbon footprint and environmental impact.
- Intel's investment will help the European Union work toward its goal of a more resilient semiconductor supply chain.

Un "momento storico" per i rapporti Italia-Francia: firmato il
Trattato del Quirinale

fubblicato IL 26 novembre 2021 alle 13 oo in Elioopa Itala

$f \boldsymbol{y}$ in $\boldsymbol{\square}$
|| 26 novembre, il presidente francese, Emmanuel Macron, e il primo ministro italiano, Mario Draghi, alla presenza del presidente della Repubblica, Sergio Mattarella, hanno firmato il "Trattato del Quirinale", un accordo di cooperazione bilaterale rafforzata.

Di Francesco Bechis | 22/10/2O21 - Verde e blu

L'agenzia Reuters conferma che i colloqui del governo italiano c colosso americano Intel per costruire un maxi-impianto di proc chip in Italia sono in fase avanzata. In Germania una megafacto Mirafiori in pole per il packaging. La rete di Draghi e Giorgetti pe Paese un hub europeo

Italia e Germania sono in pole per ospitare due maxi-impianti di produzione di chipdell'americana Intel. Un'indiscrezione di Reuters svela il lavoro dietro le quinte del governo
Draghi per chiudere un accordo da miliardi di euro che farebbe dell'talalia un hub internazionale per i semiconduttori

Business

Intel investirà 80 miliardi in Europa in dieci anni. In Italia ne arriveranno 4,5

Di Gabriele Di Matteo
Staff
europea", ha aggiunto. A tale proposito, il premier italiano è tornato a parlare di Difesa Comune Europea, un tema particolarmente caro anche a Macron, e al rilancio degli investimenti in ambiti strategici e innovativi, citando semiconduttori, transizione digitale ed energetica e, ancora, difesa. "Dobbiamo dotare l'Unione Europea di strumenti che siano compatibili con le nostre ambizioni e con le aspettative dei nostri cittadini, il trattato che abbiamo firmato oggi segna l'inizio di questo percorso, grazie", ha concluso Draghi.

Semiconduttori, Italia avanti tutta:

 ecco la strategiaits semiconductors ecosystem, increases its resilience, as well as

Home > Mercati Digitali

Sulla scia del "Chips Act" verso l'autosufficienza tec nuova era di innovazione nazionale e internazional

Pubblicato il 11 ago 2023

Luisa Franchina
Presidente Associazione Italiana espert
Tommaso Ruocco
Junior Analyst Hermes Bay
The Chips Act sho
These investment

- existing pro programme)
- announeed In tota more thi broadly matched

Gli investimenti dell'Italia nel settore dei semiconduttori

I recenti provvedimenti del 7 agosto, con stanziamenti di 30 milioni da parte del Consiglio dei ministri, oltre al credito d'imposta e agli investimenti di oltre $\mathbf{6 0 0}$ milioni previsti nel Decreto Omnibus, sono integrati da ulteriori finanziamenti significativi. Il Piano nazionale di ripresa e resilienza prevede 50 milioni per la ricerca e lo sviluppo dei semiconduttori a livello nazionale.

Vittorio Privitera, direttore dell'Istituto per la microelettronica e microsistemi del Consiglio Nazionale delle Ricerche, sottolinea l'importanza di tali finanziamenti, inclusi i 40 milioni del progetto Beyond Nano a Catania, provenienti da Regione Sicilia, Cnr e Mur, e i 10 milioni dell'iniziativa europea Ipcei 2.

For a better comprehension

MICROELECTRONICS AND GLOBALIZATION

proff. A. Paccagnella e D. Burigana

